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1. Introduction 
 

Global energy demand is increasing in a high pace, while greenhouse gases emission peak. 

International agreements (such as the Paris Agreement) aim and saving the day with speeding-up 

plans for reaching zero-net emissions and phasing out fossil fuels wherever it is possible. 

 

With technological progress renewable energy with particular potential on the side of PV with 

increasing efficiencies to costs ratios emerge as realistic alternatives. Large scale adoption is started 

to be driven by policy and market initiatives as well as by increasing social awareness of the necessity 

to transit to the clean energy. The main practical challenge in deployment of PV on a massive scale is 

in its intermittence. The smart grid and battery systems are developing rapidly and provide 

increasingly efficient solutions to this challenge. One of the particularly promising technology, a key 

enabled of efficient interplay of PV systems and its grid integration is artificial intelligence and 

machine learning. 

 

Applying AI technology aims at enabling significant advancement in photovoltaics and solar energy 

generation due to machine learning enabled data science based optimization of vast historic and 

real-time datasets of operational parameters and external circumstances (these can be gathered by 

sensors, sensor networks, and energy operators). AI assisted PV holds a disrupting potential for the 

solar energy industry. 

 

All indicated AI assisted smart PV technology development directions are consistent with the goals 

set out by the EU and make a field of high interest for relevant stakeholders to enter international 

partnerships and initiate standardizing activities.  

 

Key-words: Smart PV, AI, Photovoltaics, Smart grids, Smart metering, Smart energy, MPPT 

 

2. Technical specification of processes and devices 
 

Initiatives at standardizing concepts and technological approaches in leveraging AI methods to 

enable development of disruptive solutions in PV value chain, forming cooperative relations between 

individual experts in both fields of AI and solar energy, as well as scaling this cooperation to the level 

of institutional partnerships of research and industry stakeholders, will certainly speed uptake of the 

AI assisted smart PV. Stakeholders of potential interest in this regard (beyond international 

Standards Developing Organizations) include PV systems producers (from designs to manufacturing 

of single solar cells up to integration of solar modules and electronic systems), PV integrators and 

deployments companies,  operators or owners of PV power plants, as well as AI and PV industrial 

experts and researchers can cooperate exchanging supplied necessary data and solar subject matter 

expertise with AI and ML expertise. The general goal of AI assisted PV technology is in improving 

economic feasibility of the PV energy transition (e.g. by cost optimization of deployments and 
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operations of solar modules), as well as increasing reliability and value of solar PV technologies upon 

their integration with advancing smart grids, enabling a shift of the energy market from a centralized 

model to a distributed one, with inclusion of prosumers in PV solar power enabled microgeneration. 

AI and ML hold a potential to tackle emerging challenges for the PV wide scale adoption.  

Naturally an ongoing identification of new applications advancing early-stage AI assisted PV 

technology will be taking place and the current initial standard drafting aims at tidying up technical 

directions of currently known applications and classifying many various approaches. 

The current initiation of a general level reference standard will be further iterated towards more 

mature and advanced technical reference standard, and to this the AI Smart PV group under the 

Smart Energy Standardization Group of the EITCI Institute has been established. 

3. Introduction to Artificial Intelligence (AI) 
 

AI is a discipline of computer science concerned with designing computational systems able to 

introduce machine understanding and data processing intelligence. The goal of AI is to solve 

problems in a similar way to humans do, hence artificial intelligence. Due to recent machine learning 

advances AI technologies are either replacing conventional techniques or are being integrated into 

existing systems to support their operation in an intelligent manner. Mostly applications of AI relate 

to optimization of operation of complex systems.  

 

Certainly artificial intelligence is area that contain many different approaches. Some have recently 

proven better then others (sometimes inversing the trends from the past, which makes a realistic the 

expectation that the trends will shift again, meaning that no approach should be left over and all 

should be investigate in technical terms to facilitate smart PV). Recent progress in AI has been 

dominated by machine learning (ML), coming in many variants (including data-hungry deep learning, 

human learning indicated reinforcement learning techniques and many others). In general in ML 

(implemented most usually on artificial neural networks, i.e. interconnected graphs of information 

processing nodes, which to some extent aim at modeling a brain) computational systems try to 

implement an ability to learn on a basis of observation of processes dynamics (usually associated 

with so called data-analytics / engineering from vast sets of data, using real life operative parameters 

of different complex processes, which are attained in so-called data mining), rather then being 

directly programmed to undertake certain steps (as it is in conventional imperative or functional 

algorithmics).  

 

Using multiple various statistical techniques such machine learning algorithms are capable of finding 

best solutions (or improving existing) regarding many practical problems only by computationally-fast 

(far superior to human possibilities) processing of huge data sets to support or fully automate 

decision making in high quality prediction and estimation of different factors. It is a matter of 

discussion whether AI is (or will be) really generally superior to humans, but it is a well known truth 

that in certain tasks the way of machine computation is beyond possibilities of humans (like for 

example instant performing of huge calculations).  
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It is also evident that humans are still far superior to AI in visual patterns recognition or in natural 

speech, which however might be a subject of change. It is expected though that applying AI to certain 

tasks (most usually associated with data-intensive tasks, well suited to complex systems parameters 

monitoring and management with possible prediction of missing data or the data that will be 

attained in the future based on the past data patterns) is a proper direction which brings a lot of 

added value (the best example is how machine learning assisted techniques revolutionized 

knowledge distribution in the society driving evolution of Internet with increasingly intelligent search 

engines).  

 

3.1. Machine Learning (ML) 

 

Machine learning (ML) is the study of computer algorithms that improve automatically through 

experience. It is seen as a part of artificial intelligence. Machine learning algorithms build a model 

based on sample data, known as training data, in order to make predictions or decisions without 

being explicitly programmed to do so. Machine learning algorithms are used in a wide variety of 

applications, such as email filtering and computer vision, where it is difficult or unfeasible to develop 

conventional algorithms to perform the needed tasks. 

 

Conditioned by different approaches to learning, ML algorithms can be hence classified in many 

ways. In a most general classical the ML methods can be divided into supervised learning, 

unsupervised learning and reinforcement learning. 

 

Machine learning algorithms are used in a wide variety of applications, such as email filtering and 

computer vision, where it is difficult or unfeasible to develop conventional algorithms to perform the 

needed tasks. Machine learning was defined in 1959 by Arthur Samuel as the “field of study that 

gives computers the ability to learn without being explicitly programmed”. 

 

A subset of machine learning is closely related to computational statistics, which focuses on making 

predictions using computers, however not all machine learning is statistical learning. The study of 

mathematical optimization delivers methods, theory and application domains to the field of machine 

learning. Data mining is a related field of study, focusing on exploratory data analysis through 

unsupervised learning. In its application across business problems, machine learning is also referred 

to as predictive analytics. 

 

As mentioned, machine learning approaches are traditionally divided into three broad categories, 

depending on the nature of the “signal” or “feedback” available to the learning system: 

 

Supervised learning: The computer is presented with example inputs and their desired outputs, given 

by a teacher, and the goal is to learn a general rule that maps inputs to outputs. 
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Unsupervised learning: No labels are given to the learning algorithm, leaving it on its own to find 

structure in its input. Unsupervised learning can be a goal in itself (discovering hidden patterns in 

data) or a means towards an end (feature learning). 

 

Reinforcement learning: A computer program interacts with a dynamic environment in which it must 

perform a certain goal (such as driving a vehicle or playing a game against an opponent). As it 

navigates its problem space, the program is provided feedback that’s analogous to rewards, which it 

tries to maximize. 

 

3.1.1. Supervised learning 

 

In supervised learning, a supervisor or a teacher must support the algorithm in learning its 

parameters. These algorithms require a data set that contains information about both the input data 

and the output. During the learning phase, when the algorithms try to make predictions about the 

data set, the teacher corrects and guides the algorithms in the right direction so that they improve 

over time. Additionally, supervised learning methods can be broken down into two main categories 

depending on the output variable they want to predict. If the output data is a discrete variable, e.g. 

For example, to determine whether the next day is sunny, cloudy, or rainy (class 1, 2, or 3), these 

cases are referred to as a classification problem.  

 

On the other hand, when the required power is a continuous or real value, e.g. For example, trying to 

predict the irradiance of a city over a certain period of time, or trying to determine the best size of a 

PV module, turns the case into a regression problem. Some examples of supervised learning 

algorithms include linear and logistic regression, k-Nearest Neighbors, neural networks, and more 

robust algorithms such as deep neural networks and their variations. Figure 1 summarizes the 

concept of an artificial neural network inspired by biological networks in the brain. An ANN therefore 

contains three layers (input, hidden and output), connections, distortions, weights, an activation 

function and a summation node. These weights and biases are important parameters that affect the 

output function. 

 

3.1.2. Unsupervised learning 

 

In contrast, unsupervised learning algorithms do not require a supervisor to learn the input data or 

make predictions. In this case, these types of algorithms only require one set of input data. Your goal 

is to correctly learn a model that best represents the given data. As these algorithms rely on finding 

patterns in the input data, unsupervised learning methods are therefore mainly used consist of 

clustering algorithms like K-means and self-organizing cards.  
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3.1.3. Reinforcement learning 

 

In reinforcement learning, in contrast to the previous two areas, the algorithms for reinforcement 

learning are based on a goal-seeking approach in which the learner tries different actions to find out 

which are best suited to achieve a particular goal. Some examples of reinforcement learning 

algorithms include Q-learning and Monte Carlo methods. 

 

3.1.4. Other AI ML methods 

 

Other possible and investigated ML approaches include autonomous multi-agent systems (including 

particle swarm optimization), fuzzy logic (including quantum computational model-based AI), expert 

systems (with knowledge based and inference systems), evolutionary and genetic algorithms, and 

other (e.g. simulated annealing or ant colony methods). Such techniques do not imperatively solve 

specific tasks within a range of constraints as it is most usually intended in conventional programs, 

but rather try to operate independently from imperative step-by-step approach using different 

approaches of sometimes chaotic attainging of solutions. E.g. expert systems have been developed 

to solve problems within the same high-level abstraction approach as humans (using the acquired 

knowledge and a logical inference systems to make statements, predictions and decisions). An expert 

system usually consists of two main components: an inferential logic system and a knowledge base. 

The knowledge base contains facts and rules, while the inference engine aims to apply these rules 

and facts to infer about new knowledge (the validating and if actually verified, also populating the 

knowledge database, becoming a basis for further predictions). 

 

A number of optimization techniques as inspired by nature have been developed as well in the field 

of AI methods. These include genetic algorithms first developed by Holland (1975) based on the 

principles of genetics and evolution (with slightly modified or mutated self-copies of the algorithms 

populating evolution space). On the other hand, the ant colony approach is another computer 

optimization model that was inspired by the behavior of ants able to find the shortest routes as 

formulated by Dorigo (1992). In this nature-inspired approach ants move at random to look for the 

optimal route to their food, but while moving they leave their pheromones, hence the stronger the 

pheromones the more likely ants will follow that particular path at strengthen it even more so. This 

method is successfully applied to optimize machine planning and telecommunications networks and 

might find its application towards smart power grids dynamic restructuring in the future. Other 

inspired by nature approaches include particle swarm optimization (influenced by a flock of birds). 

 

A different optimization technique involves fuzzy logic (proposed by Zadeh, 1965), which has become 

a branch of computer logic that differs from conventional (Boolean) logic, in that regard that binary 

values of 1 corresponding to true and 0 corresponding to false logic values, are rather replaced a 

spectrum mixing these two discrete values (usually in a probabilisty way, but in case of quantum 

mechanics in a completely non-classical and non-local way giving rise to the phenomenon known as a 

quantum superposition or a qubit, a quantum analogue of a two-dimensional logic systems known 
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classically as bit). Fuzzy logic is often used in combination with expert systems and with neural 

networks. It strongly influenced development of quantum artificial intelligence, when superpositions 

of states and interconnections between nodes of quantum neural networks can benefit of 

exponentially scaling state systems quantum parallelism. Other physical sciences bases approaches 

involve simulated annealing as an effective optimization technique (proposed by Kirkpatrick et al). It 

has been inspired by the process of heating and slowly cooling solids and can be used to maximize or 

minimize a function. Recent progress in quantum annealing have advanced this method through the 

use of the quantum mechanical process of tunneling electrons through a barrier of energy potential 

(so called Josephson junctions), making non-universal quantum computer models excellent for 

optimizing complex problems that can be reduced to finding local minima of an oscillating function. 

This latter approach could prove to be particularly useful for investigating and optimizing the 

intelligent power grid input control of a very unstable PV-generated power in a real-time signal 

processing (therefore necessarily fast). 

 

Also other approaches have been developed which are already were or are undergoing investigations 

for practical AI applications. 

 

Many of these discussed above and other as well, do not fit well into the three-fold categorisation of 

the machine learning as discussed in the previous chapters. Sometimes it is beneficial to use more 

than one method in the same machine learning system for beneficial results. This involves for 

example topic modeling combined with dimensionality reduction or meta learning. 

 

It should be however stressed that as of 2020, the so called deep learning approach (based on 

querying huge datasets) has become the dominant approach for much ongoing work in the field of 

machine learning. 

 

3.1.5. Deep learning 

 

Deep learning (also known as deep structured learning) is part of a broader family of machine 

learning methods based on artificial neural networks with representation learning. As discussed 

machine learning can be supervised (also semi-supervised) or unsupervised. Deep learning 

architectures such as deep neural networks, deep belief networks, recurrent neural networks and 

convolutional neural networks have been applied to fields including computer vision, machine vision, 

speech recognition, natural language processing, audio recognition, social network filtering, machine 

translation, bioinformatics, drug design, medical image analysis, material inspection and board game 

programs, where they have produced results comparable to and in some cases surpassing human 

expert performance. Artificial neural networks (ANNs) were inspired by information processing and 

distributed communication nodes in biological systems. The adjective deep in deep learning refers to 

the use of multiple layers in the network. Early work showed that a linear perceptron cannot be a 

universal classifier, and then that a network with a nonpolynomial activation function with one 

hidden layer of unbounded width can on the other hand so be. Deep learning is a modern variation 



9 
 

which is concerned with an unbounded number of layers of bounded size, which permits practical 

application and optimized implementation, while retaining theoretical universality under mild 

conditions. In deep learning the layers are also permitted to be heterogeneous and to deviate widely 

from biologically informed connectionist models, for the sake of efficiency, trainability and 

understandability, hence the structured part. 

 

4. Practical AI solutions that may be utilized and integrated into AI assisted 

smart PV 
 

One of the important AI models implementation platforms is Google Cloud. Google Cloud in its core 

mission is highly focused on delivering high abstract level AI services and performing as high-end 

machine learning platform. Some of the Google Cloud AI services include: 

 

• Cloud AutoML – Service to train and deploy custom machine, learning models. 

• Cloud TPU – Accelerators used by Google to train machine learning models. 

• Cloud Machine Learning Engine – Managed service for training and building machine learning 

models based on mainstream frameworks. 

• Cloud Vision API – Image analysis service based on machine learning 

• Cloud Video Intelligence – Video analysis service based on machine learning 

 

Google AI is a special division of Google dedicated to artificial intelligence. The mains projects of 

Google AI include: 

 

• Serving cloud-based TPUs (tensor processing units) in order to develop machine learning 

software, as well as development a dedicated high-level abstraction software library for AI 

modeling in different languages, the TensorFlow. 

• The TensorFlow Research Cloud gives researchers and engineers free cluster of one thousand 

cloud TPUs to perform machine learning research on, under the condition that the research 

is open source and they put their findings and publish it in a peer-reviewed scientific journal. 

Portal to thousands of research publications by Google staff. 

• Sycamore: a 54-Qubit Programmable Quantum Processor. 

• Google Brain, which is a large scale a deep learning artificial intelligence research project at 

Google, formed in the early 2010s, combining open-ended machine learning research with 

information systems and large-scale computing resources. The Google Brain project began in 

2011 as a part-time research collaboration between Google Fellow Jeff Dean, Google 

Researcher Greg Corrado, and Stanford University professor Andrew Ng. Ng had been 

interested in using deep learning techniques to crack the problem of artificial intelligence 

since 2006, and in 2011 began collaborating with Dean and Corrado to build a large-scale 

deep learning software system, DistBelief, on top of Google’s cloud computing infrastructure. 
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Google Brain started as a Google X project and became so successful that it was graduated 

back to Google: Astro Teller has said that Google Brain paid for the entire cost of Google X. In 

June 2012, the New York Times reported that a cluster of 16,000 processors in 1,000 

computers dedicated to mimicking some aspects of human brain activity had successfully 

trained itself to recognize a cat based on 10 million digital images taken from YouTube 

videos. Since the early years of the project, Google Brain has significantly advanced and finds 

many applications in Google AI products. 

 

4.1. Python for AI modeling 

 

Python is an interpreted, high-level and general-purpose programming language. Python’s design 

philosophy emphasizes code readability with its notable use of significant whitespace. Its language 

constructs and object-oriented approach aim to help programmers write clear, logical code for small 

and large-scale projects. Python is often described as a “batteries included” language due to its 

comprehensive standard library. Python is commonly used in artificial intelligence projects and 

machine learning projects with the help of libraries like TensorFlow, Keras, Pytorch and Scikit-learn. It 

is a dynamically-typed (executing at runtime many common programming behaviours that static 

programming languages perform during compilation) and garbage-collected (with automatic memory 

management). It supports multiple programming paradigms, including structured (particularly, 

procedural), object-oriented and functional programming. Python interpreters are supported for 

mainstream operating systems and available for a few more (and in the past supported many more). 

A global community of programmers develops and maintains CPython, a free and open-source 

reference implementation. A non-profit organization, the Python Software Foundation, manages and 

directs resources for Python and CPython development. As of January 2021, Python ranks third in 

TIOBE’s index of most popular programming languages, behind C and Java, having previously gained 

second place and their award for the most popularity gain for 2020. It was selected Programming 

Language of the Year in 2007, 2010, and 2018. An empirical study found that scripting languages, 

such as Python, are more productive than conventional languages, such as C and Java, for 

programming problems involving string manipulation and search in a dictionary, and determined that 

memory consumption was often “better than Java and not much worse than C or C++”. Python, as a 

scripting language with modular architecture, simple syntax and rich text processing tools, is most 

often used for programming practical artificial intelligence applications. 

 

4.2. TensorFlow 

 

TensorFlow is a free and open-source software library for machine learning (that is most widely used 

in combination with Python). It can be used across a range of tasks but has a particular focus on 

training and inference of deep neural networks. It is a symbolic math library based on dataflow and 

differentiable programming. It is used for both research and production at Google.  
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TensorFlow was developed by the Google Brain team for internal Google use. It was released under 

the Apache License 2.0 in 2015. Starting in 2011, Google Brain built DistBelief as a proprietary 

machine learning system based on deep learning neural networks. Its use grew rapidly across diverse 

Alphabet companies in both research and commercial applications. Google assigned multiple 

computer scientists, including Jeff Dean, to simplify and refactor the codebase of DistBelief into a 

faster, more robust application-grade library, which became TensorFlow. In 2009, the team, led by 

Geoffrey Hinton, had implemented generalized backpropagation and other improvements which 

allowed generation of neural networks with substantially higher accuracy, for instance a 25% 

reduction in errors in speech recognition.  

 

TensorFlow is Google Brain’s second-generation system. Version 1.0.0 was released on February 11, 

2017. While the reference implementation runs on single devices, TensorFlow can run on multiple 

CPUs and GPUs (with optional CUDA and SYCL extensions for general-purpose computing on graphics 

processing units). TensorFlow is available on 64-bit Linux, macOS, Windows, and mobile computing 

platforms including Android and iOS. Its flexible architecture allows for the easy deployment of 

computation across a variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters of 

servers to mobile and edge devices.  

 

TensorFlow computations are expressed as stateful dataflow graphs. The name TensorFlow derives 

from the operations that such neural networks perform on multidimensional data arrays, which are 

referred to as tensors. During the Google I/O Conference in June 2016, Jeff Dean stated that 1,500 

repositories on GitHub mentioned TensorFlow, of which only 5 were from Google. In December 

2017, developers from Google, Cisco, RedHat, CoreOS, and CaiCloud introduced Kubeflow at a 

conference. Kubeflow allows operation and deployment of TensorFlow on Kubernetes, thus easily 

integrated practically unlimited capacity of the cloud AI with practical neural networks model for 

advanced machine learning tasks, that could well integrated with AI assisted smart PV. 

 

4.3. Keras 

 

Keras is an open-source software library that provides a Python interface for artificial neural 

networks. Keras acts as an interface for the TensorFlow library. Up until version 2.3 Keras supported 

multiple backends, including TensorFlow, Microsoft Cognitive Toolkit, Theano, and PlaidML. As of 

version 2.4, only TensorFlow is supported. Designed to enable fast experimentation with deep neural 

networks, it focuses on being user-friendly, modular, and extensible. It was developed as part of the 

research effort of project ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating 

System), and its primary author and maintainer is François Chollet, a Google engineer. Chollet also is 

the author of the XCeption deep neural network model.  

 

Keras contains numerous implementations of commonly used neural-network building blocks such as 

layers, objectives, activation functions, optimizers, and a host of tools to make working with image 

and text data easier to simplify the coding necessary for writing deep neural network code. The code 
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is hosted on GitHub, and community support forums include the GitHub issues page, and a Slack 

channel. In addition to standard neural networks, Keras has support for convolutional and recurrent 

neural networks. It supports other common utility layers like dropout, batch normalization, and 

pooling.  

 

Keras allows users to productize deep models on smartphones (iOS and Android), on the web, or on 

the Java Virtual Machine. It also allows use of distributed training of deep-learning models on 

clusters of Graphics processing units (GPU) and tensor processing units (TPU). Keras has been 

adopted for use in scientific research due to Python (programming language) and its own ease of use 

and installation. Keras was the 10th most cited tool in the KDnuggets 2018 software poll and 

registered a 22% usage. 

5. Applications of AI to smart PV - processes and devices  
 

Applying AI to important tasks for smart PV systems deployments and operations is undergoing 

significant investigation for several years already. The recent progress of AI may be very beneficial to 

support PV energy transition on a large scale. 

 

How exactly artificial intelligence can be successfully applied in different applications of 

photovoltaics? It should be noted that technical understanding of possible approaches is presently 

well developed however many particularities are under investigation in many currently ongoing R&D 

projects. Results of these projects will support further standardization of AI assisted smart PV. 

 

5.1. AI assisted modeling of solar cell devices 

 

A physical model governed by mathematical formulation accurately describing a solar cell design is a 

critical tool in for better understanding and fine-tuning of the characteristics, performance and 

optimization of a solar cell device. 

 

A good example of how AI and machine learning supported modeling can benefit optimization of 

solar cells designs and construction is in the plasmonic enhancement of solar cells. This can be well 

explained on a new generation of perovskite solar cells. An ordinary perovskite solar cell utilizes a 

perovskite structured compound (i.e. material with the same crystal structure as the CaTiO3 – 

calcium titanium oxide, originally discovered in 1839 and named after Russian mineralogist Lev 

Perovski), most commonly a hybrid organic-inorganic lead or inorganic tin halide-based material. It 

represents an emerging class of thin-film photovoltaic cells. Perovskites are efficient at absorbing 

light and transporting charges which are the key material properties for producing electricity from 

the sunlight. In contrast to traditional p-n junction semiconductor solar cells (like Si cells), perovskite 

cells are soluble in many different types of solvents and remain semi-transparent after crystallization 

in very thin layers. As such, perovskite SCs may be easily ink-jet or screen printed in simple roll-to-roll 
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processes or even sprayed onto large surfaces similarly like ordinary paints that when activated with 

chemically induced crystallization process create thin-film layers (with the thickness below 1 μm) also 

relatively easily further integrated in elastic perovskite solar cell device. Those properties make the 

perovskite cells significantly cheaper in fabrication and very well suited to mass-output market 

uptake and vast applications (such as so called energy smart buildings elevations coverings of variety 

of geometries, semitransparent windows, roofs coverings, outdoor furniture, vehicles or even 

clothing external surfaces that may produce enough power from the sunlight to e.g. charge a 

personal mobile device). The same properties make these cells specially interesting for advanced 

space applications in replacing of the sturdy and heavy panels with in-orbit printed (from the liquid 

solvents containers) flexible and large-surface sheets of thin-film solar modules or coverings for 

objects in space, even facilitating the planned future self-sustained missions to the Moon or Mars.  

 

The main problem of the perovskite solar cells are lower efficiencies in applications-required 

chemically stable solar cell device configurations that might be greatly improved with optimized 

metalization in form of nano-particles inclusions and plasmonic energy mediation effects. This 

concept was proven specifically in perovskites in the initial experimental trials with a surprisingly 

strong magnitude of the plasmonic efficiency enhancement observed for perovskite (well beyond 

magnitudes in traditional p-n junction solar cells) but is not yet understood in terms of physical 

mechanisms involved and not described in physical models, nor developed commercially.  

 

Here with the aid come advanced ML enabled methods for modeling towards optimization and fine-

tuning of the possible to employ very strong plasmon photovoltaic enhancement in metalized 

perovskite solar cells. This requires development of a microscopic quantum mechanical model of the 

new channel of plasmon mediated enhancement of the PV effect in perovskites which was confirmed 

in the recent experiments, taking into account that perovskite SCs hold a strategic potential for the 

EU, which managed to secure in the recent years a very strong position in terms of global 

competition in this area. A strong increase of the perovskite SCs efficiencies (the experimental record 

is 40% relative increase due to metalization as achieved experimentally) is most probably due to the 

reduction of the exciton binding energy, but not of plasmon induced strengthening of photon 

absorption known from the p-n junction solar cells (like the metalized Si cells). On the technological 

side, nanoparticles would be embedded in the perovskite compounds close to the interface with the 

electron or hole absorber in the architecture of a hybrid chemical perovskite cell. Such cells operate 

in a different manner than conventional p-n junction cells, resulting in a different type of the 

plasmonic PV effect, which, however, is surprisingly strong. Application of adequate treatment in 

quantum models (e.g. the Fermi golden rule to the coupling of the dipole near-field-zone - lower 

distance than the wavelength - radiation of surface plasmons in nanoparticles to the band electrons 

in a nearby semiconductor) can lead to advancing designs with AI enabled parameter optimization in 

a technological fine-tuning towards the innovative product development. This requires processing 

huge amount of data to account for most proper adjusting of the identified contributing components 

of this effect, an optical one present in p-n junction cells and resolving itself mainly to a photon 

absorption growth, and an electrical one - the newly discovered in perovskite cells apparently 
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beyond absorption in a common general microscopic model. Model parameters optimizing for 

complex system is certainly a domain in which AI and ML can excel in current stage of theese 

methods and technology development. 

 

In general theoretical models describing solar cell device operation (in terms of physics of 

semiconductor structures involved) are primary tools in optimization of PV products efficiencies. A 

solar cell as a physical system is generally a simple semiconductor layered structure device of a p-n 

junction diode, producing electricity current from absorption of photons in a photovoltaic effect. 

Dominating semiconductor material in PV technology is the silicon - Si, either monocrystalline or 

polycrystalline. Depending on the complexity of the structure of the single-layered solar cell device 

(or a number of active solar cell layers in case of so-called multi-junction solar cell devices) the 

efficiencies to convert sunlight energy into electricity are between several percent up to even 40 

percent (in complicated and expensive devices).  

 

Creating a numerical model of a solar cell involves most importantly its interaction with the e-m field. 

The e-m field simulation and its interaction with a semiconductor device can be done in specialized 

numerical methods such as the Finite Element Method (FEM) within a modeling suite called 

COMSOL. The modeling of the semiconductor device on its own is done in different approaches using 

electronic modeling tools used in electronic industry. The most important modeling parameters 

involce diode saturation current, series resistance, ideality factor, shunt resistance and the 

photocurrent (PV generated electricity). Many numerlical as well as analytical approaches has been 

developed to simulate mutual interdependence of the solar cell characterizing parameters. Altough 

the I-V relationship (referred to as I-V curve) is highly non-linear for solar cells which caused 

problems for many algorithms. Further more computational complexity for more complex devices is 

also problematic for a standard numerical approach. The more advanced approach partially based on 

ML and AI have been recently investigated with optimizing and modeling of the PV devices with a 

high rate of success.  

 

The currently identified as most promising directions were in simulated annealing combined with 

artificial neural networks. E.g. Karatape et al. developed an AI solar cell design optimization model 

basing on the Sandia National Laboratory data for PV performance in a function of operating 

temperatures and solar irradiation. A simple analysis proves that the relationship between the I-V 

curves is nonlinear and cannot be easily expressed analytically, which makes a great problem space 

for AI neural network to be utilized. Their 2006 paper proposed neural network based approach for 

improving the accuracy of the electrical equivalent circuit of a photovoltaic module, and as the 

equivalent circuit parameters of a PV module mainly depend on solar irradiation and temperature, 

the dependence on environmental factors of the circuit parameters was investigated by using a set of 

current–voltage curves. In a proposed model certain data points are chosen from the corresponding 

I−V curves (the selection of points is done upon a most optimal simplified but still accurate on the 

required level representation of the curve by a minimal number of points).  
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The artificial neural network model is trained with as many possible combination of operating 

parameters (irradiation and temperature operation - the neural network is trained with empirical I-V 

curves, and the equivalent circuit parameters are estimated by irradiation and temperature readouts 

only, without nonlinear equations solving that would be necessary in conventional methods). The 

operation of this one of the first solar cells AI models has been verified in an experiment with the 

achieved empirical data highly corresponding with the data attained from the NN model and what's 

by far surpassing the accuracy from conventional numerical approaches. The results of ANN training 

was the a possibility to model an abstract device in given parameters combination (irradiation in 

temperature) to generate in ML approach an I-V curve enabling for the data to be input to a diode 

solar cell model.  

 

Different approach is in generating I-V empirically and determining operating points using ML (based 

on operating parameters of an experimental solar cell, I-V tracer and a weather station for readouts 

of irradiation level and the temperature and comparing the readouts with data attained in a model 

to provide a learning enabling feedback. The parameters generated by the model, despite being 

subject to errors and impossibility to discriminate between the effects on the operation of a modeled 

solar cell device of temperature vs. irradiation, were still superior (about 3 times more precise) then 

the ones possibly obtained from conventional models (in terms of Townsend equations solutions).  

 

Yet another approach is with utilization of the simulated annealing, as proposed by El-Naggar et al. 

(comparable with the genetic algorithms and particle swarm optimization methods). The operation 

of similuated annealing is based on defining an objective function and its minimization then validated 

against the experimental data (the method resulted with a Root Mean Square Error RMSE of just 

0.0017 for a single diode solar cell model, which is considered highly accurate). On the other hand 

Askarzadeh et al. has proven that the Harmony Search optimisation process provides even better 

precision, with the AI optimization method aiming at imitating an improvisation in music to find a 

harmony. Accordingly with the proposal an objective function based on the single diode model was 

minimised with respect to a particular range and the Harmony Search method was able to extract the 

main solar cell device parameters with an error (RMSE) significantly smaller (below one-tenth) than 

obtained in the simulated annealing method. 

 

5.2. AI assisted smart PV applications in weather forecasting and automated 

insolation analytics for interactive irradiation mapping for smart PV deployments 

 

When the solar cells device is manufactured and integrated into a solar module its efficiency is well 

defined. Upon its deployment it can be influenced with electronic control (involving smart hybrid 

inverters or a single panel adequate microinverters involving e.g. methods of AI assisted MPPT). 

However before the operational AI optimization of a PV installation is possible, an important aspect 

for proper planning in deployment of PV is weather forecasting (which also has an important role for 

smart grids operations). Predicting weather is not an easy task due to the complexity of the system, 

but making some well-informed analysis enables with the use of advanced ML models of some 
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reasonable short term ahead of time estimation. Furthermore quantifying average irradiation and 

temperature (as the main important, however also backed up by humidity, wind speeds influencing 

cloud coverage changing affecting irradiation, daily sunshine duration and sunlight incoming angles, 

etc.) conditions allows to estimate the parameters of the PV installation that would generated 

certain required power to cover the expected loads.  

 

Meteorological analysis and estimation of the key weather parameters is hence an important factor 

in deciding the power output of the PV installation, as these parameters have an overwhelming 

influence on the efficiency of solar cells operation. Dedicated instrumentation (pyranometer, 

pyrheliometer, two-axis solar trackers, etc. are used to directly measure global and direct solar 

radiation). In certain places this data is available from already performed measurements stored in 

accessible databases (e.g. a database of NREL). Usually however these parameters are rather difficult 

to be obtained for given sites because of the PV systems installation planned in areas were these 

parameters have not been measured (low availibility of data) and the direct measurements 

impractical because of the high cost of the equipment. Hence AI is an important alternative which 

recently has been used in aiding of solar irradiation mapping (along with other PV important 

meteorological parameters).  

 

How AI methods can be used to support mapping solar irradiation?  

 

Among multiple national and international projects there is gathered huge publicly accessible 

geographic data on insolation. An important application of AI assisted PV is employing data 

engineering of databases of insolation to provide a scalable and fast solution for computational 

analysis of conditioning PV parameters insolation in any geographical area (with using machine 

learning and AI estimation techniques for the low-data regions). 

 

An industrial case is the Project Sunroof initiated by Google as a planned extension to Google Maps 

product, that would provide full analytics of insolation data from multiple sources joined and 

processed by Google algorithmics and merged with Google Maps. 

 

Project Sunroof was started by a Google engineer Carl Elkin. The initiative's purpose is mapping the 

planet's solar potential, one roof at a time. The Project Sunroof primarily works to encourage the 

private adoption of solar energy by providing a set of tools to facilitate the purchase and installation 

of solar panels. Using data from Google Maps to calculate shadows from nearby structures and trees 

and taking into account historical weather and temperature patterns data, the Project Sunroof 

calculates how much money a user can expect to save yearly by making use of the solar power PV 

installation. In addition, the Project Sunroof also provides a list of local solar power retailers capable 

of installing solar panels in that area. The Project Sunroof was initially launching only in the United 

States, for the cities of Boston, San Francisco, and Fresno. The project has then expanded to cover 

larger metropolitan areas across the United States and is currently developing globally. 
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The Google’s Project Sunroof bases on the data of: 

 

• Imagery and 3D modeling and shade calculations from Google. 

• Weather data from the National Renewable Energy Laboratory (NREL). 

• Utility electricity rates information from Clean Power Research. 

• Solar pricing data from NREL’s Open PV Project, California Solar Initiative, and NY-Sun Open 

NY PV data. 

• Solar incentives data from relevant Clean Power Research, Federal, State and local 

authorities as well as relevant utility websites. 

• Solar Renewable Energy Credit (SREC) data from Bloomberg New Energy Finance, SRECTrade, 

and relevant state authorities. 

• Aggregated and anonymized solar cost data from Aurora Solar software. 

 

A similar but less visual solution – PVWatts tool – was developed by the National Renewable Energy 

Laboratory (NREL). Similarly as Project Sunroof It estimates solar energy production in taking into 

account multiple factors, e.g. sun shading by objects, typical weather patterns, equipment 

parameters, etc. The estimations are based on multiple databases, in many cases with many historic 

data for proper predictions e.g. of averaged weather conditions for insolation, as well as complicated 

analyses for shading (algorithms take into account even recent growth or removal of trees to most 

accurately analyze solar power potential, hence proper datamining in AI/ML techniques is important 

enabler of this technology for its future development).  

Project Sunroof’s expanded its reach to Europe partnering with E.ON and released a new online tool 

in Germany based on Google’s Earth mapping to help residential customers determine whether their 

roof is well-suited for solar panels and how much money they could save by installing solar.  

The main focus of this area of AI assisted smart PV is to help raising consumer solar awareness, and 

on making the path to solar easier for its customers and operations. Project Sunroof’s estimates in 

Europe include weather data from Meteonorm, a product by Meteotest, a Swiss company 

specializing in solar irradiance data. 

 

AI enabled extensions involve recent cooperation between Google and Total (French energy 

company with a large network of gas stations in Europe and in Africa). Total developed the Solar 

Mapper tool using AI enhanced Google solution to make solar potential estimation faster and easier, 

driving the adoption of solar power globally by using machine learning to model estimates in low-

data areas. For an example of France the project increased the territory covered for solar estimation 

from 30% to 90% using AI, which in turns encourages solar power uptake. Estimating potential 

output of solar panels on private houses, or on commercial and industrial sites is an important 

incentive in encouraging the PV uptake worldwide. The actual AI algorithms used generative 

predictive models to enhance the 3D data used to model shade and calculate solar potential where 

high-quality satellite images are not available. By doing this, AI helps to estimate the solar output for 

positioning solar panels on any location. Principal investigator in the project is Philippe Cordier (and 

the team involves Google Earth Engine and Google Cloud machine learning experts). 
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Also widespread adoption of rooftop photovoltaic systems in residential PV installations, as well as 

growing grid-scale solar systems requires a significant change in how system operators, utilities and 

solar system providers map system adoption, track it is impact, and plan new deployments. Currently 

available information suffers from disparities in resolutions (satellite imaging is usually detailed in 

dense populated areas but much less so in rural areas, also significantly differentiated in terms of 

countries). It also often lacks crucial details about time and location. The availability of such 

information would change how the system is planned and managed. Artificial intelligence and 

machine learning techniques may prove to be crucial to effectively map of the optimal deployment of 

PV systems by supporting lower intensity data with estimation, thus supporting highly aware and 

hence optimized distribution networks with high accuracy and detail. The AI assisted in generation 

and continuously updated global database joining public accessible data from project such as NREL 

insolation database or Google’s Sunroof Project may be a future of aware planning of small-to-large 

scale solar energy deployments. Recent advances in AI in effective processing huge datasets enabling 

to combine information available at a large scale (such as satellite imagery, Google street view 

images processed with AI vision for unlocking machine-understanding of shading and high-resolution 

irradiance data from weather stations and historical measures of solar irradiation parameters, hold a 

potential to generate a vastly optimized plans for location and size of future solar deployments 

globally thus supporting certain reconfigurations and reconstructions of the transmission lines or 

distribution grids as necessary for future deployments. This area of application holds potential 

especially if combined with high spatiotemporal granularity, which requires adjusting of most proper 

methods in machine learning approaches to process all the extremely detailed data and address a 

variety of applications such as identifying bottlenecks, estimating the hosting capacity of distribution 

systems, planning electric storage capacity in dependence to conditioning circumstances of locations, 

improving wholesale price predictions, and creating more accurate models of consumer adoption. 

The concept involves a SETO 2020 project with principal investigator Ram Rajagopal of Stanford 

University. 

 

5.3. AI assisted carbon intensity awareness in the grid power production for smart 

PV operation 

 

Prosumer centric, distributed energy model enabled by smart PV in standard integration with the 

smart grid, enables PV power generated surplus to be fed into the grid. The bidirectional smart meter 

measures the power input to the grid and enables intake for consumption when the electric energy is 

needed beyond the current capacity of the PV generation. In this model however the smart PV and 

energy consuming appliances integrated installation does not know when it is most optimal to 

actually use the energy generated In surplus that would be fed to the grid. This requires awareness 

not only on electric net loads in the grid but also awareness of when the grid power has the smallest 

CO2 footprint.  
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The resolution of the carbon intensity forecast is required to be at least on a regional level for the 

technology to allow prosumer installations to actually condition their energy consumption on this 

environmental factor. For the technology to work AI and Machine Learning is a key enabler, because 

of a sophisticated power system modelling required to accurately to forecast the carbon intensity 

and generation mix up to 4 days ahead for individual regions.  

 

Such achievement had been already introduced in Great Britain in terms of the Carbon Intensity API 

project (of the UK National Grid ESO). 

 

The outcomes of the project are successful to the extent that the UK National Grid has produced and 

delivered thousands of WiFi connected bulbs that change the emitted light color to green whenever 

the electricity in the grid is dominantly from low-carbon sources (thus giving a signal that it is a good 

and environmentally clean time to do a laundry in a washing machine, to turn on a dish washer or to 

start charging an electric car – in smart home integrated IoT, all this would be automatic along with 

properly managing surplus of power generated by AI assisted and interconnected PV installation 

accordingly with the awareness of the current regarding the carbon intensity of grid power). 

The open API of the project enables prosumers and smart devices to schedule energy consumption in 

coupling with smart PV local power generation in order to minimize CO emissions at a regional level. 

The data in the API estimate and indicative trend of regional carbon intensity of the electricity system 

in 96 hours ahead of real-time, thus providing programmatic and timely access to both forecast and 

estimated carbon intensity data (limited to electricity generation only). The CO2 emissions (within a 

measure of how much of CO2 is produced per kilowatt hour of electricity consumed) are gathered 

from all large metered power stations, interconnector imports, transmission and distribution losses, 

and account for national electricity demand, embedded wind and solar generation. The API allow 

developers to produce applications that enable consumers or smart devices to optimize their 

behavior in such a way as to minimize CO2 emissions. While the actual value is the estimated carbon 

intensity from metered generation, the more ambitions target is the time-ahead forecast value. Since 

the carbon intensity of electricity is sensitive to small changes in carbon-intensive generation. Carbon 

intensity varies by hour, day, and season due to changes in electricity demand, low carbon 

generation (wind, solar, hydro, nuclear, biomass) and conventional generation. 

 

National Grid ESO forecasts the carbon intensity and generation mix of electricity consumed across 

14 geographical regions in Great Britain. The spatial and temporal characteristics of carbon intensity 

can be visualized on maps or be transferred in computational datasets. 

How the AI and Machine Learning techniques are actually involved in this application? The demand 

and generation by fuel type (gas, coal, wind, nuclear, solar etc.) for each region is forecast several 

days ahead at 30-min temporal resolution using an ensemble of state-of-the-art supervised Machine 

Learning (ML) regression models. An advanced model ensembling technique is used to blend the ML 

models to generate a new optimised meta-model. The forecasts are updated every 30 mins using a 

nowcasting technique to adjust the forecasts a short period ahead. 
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To estimate the carbon intensity of electricity consumed in each region, a reduced GB network model 

is used to calculate the power flows across the network. This considers the active and reactive power 

flows, system losses, and the impedance characteristics of the network. The carbon intensity of both 

active power flows (gCO /kWh) and reactive power flows (gCO /kVArh) is then calculated and the CO 

flows are attributed around the network for each 30 min period over the next several days. The 

carbon intensity of the power consumed in each region is then determined. The same approach is 

used to estimate the proportion of each fuel type consumed in each region. 

 

A more detailed description of the Carbon Intensity API methodology can be found at: 

 

• https://github.com/carbon-

intensity/methodology/raw/master/Carbon%20Intensity%20Forecast%20Methodology.pdf  

• https://github.com/carbon-

intensity/methodology/raw/master/Regional%20Carbon%20Intensity%20Forecast%20Meth

odology.pdf  

 

5.4. AI assisted integration of smart meters data to increase renewable energy 

penetration 

 

One of the important applications of AI for smart PV is the use of machine learning techniques to 

process (including joining, synchronizing, standardizing and interpolating) electric data from 

numerous sources (especially smart meters) in order to more accurately estimate the state of the 

electric grid.  

 

This will ultimately support efficiency for interconnection and/or operation of more PV systems and 

other Distributed Energy Resources (DER) in power grid while simultaneously enhancing reliability, 

stability and resiliency of power provision.  

 

This area of AI application involves measurements and sensor data synchronization, data mining for 

error detection and identification, data based reasoning and machine learning based optimization. 

Vast amounts of the smart meters data provided by the Advanced Metering Infrastructure (AMI) and 

Phasor Measurement Units (PMU) is a great target for AI assisted processing, reasoning and 

optimization methods that will lead to significant increase of smart PV installations grid-integration 

efficiency and scale. The concept involves a SETO 2020 project with principal investigator Yang Weng 

from Arizona State University. 

 

 

 

https://github.com/carbon-intensity/methodology/raw/master/Carbon%20Intensity%20Forecast%20Methodology.pdf
https://github.com/carbon-intensity/methodology/raw/master/Carbon%20Intensity%20Forecast%20Methodology.pdf
https://github.com/carbon-intensity/methodology/raw/master/Regional%20Carbon%20Intensity%20Forecast%20Methodology.pdf
https://github.com/carbon-intensity/methodology/raw/master/Regional%20Carbon%20Intensity%20Forecast%20Methodology.pdf
https://github.com/carbon-intensity/methodology/raw/master/Regional%20Carbon%20Intensity%20Forecast%20Methodology.pdf
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5.5. AI assisted PV powerplants predictive Operation and Maintenance (O&M) 

optimization 

 

AI and ML methods are well suited optimize O&M of photovoltaic (PV) power plants by detecting, 

classifying and monitoring anomalies and malfunctions along with the prediction and mitigation. The 

AI systems can predict failures and prevent their occurrence based on vast data processing abilities 

with well-informed reasoning on the reasons and circumstances preceding possible malfunctions. 

Such predictive AI O&M solutions is of critical importance for industry-level PV power plants with 

large number of solar cells modules and complex interconnection systems, as due to the machine 

learning capabilities the system would increasingly better predict failures and allow to schedule 

proper maintenance.  

 

Predictive O&M is an important aspect of the smart O&M to sustain a high profile and economically 

optimized performance of a solar PV plant and reduce its downtime. Real-time monitoring data of 

various system outputs, such as the as power output, other more detailed probing of the electricity 

signature, detection of fluctuation patterns, temperature sensors readouts, combined with accurate 

weather information sensor networks can be meaningfully processed by AI algorithms in neural 

networks models trained and self-improving in identification of the common fault class patterns. The 

most adequate systems are various models of neural networks as well as hierarchical generative 

models and as proposed in recent projects – probabilistic information fusion framework fed with 

data from both the sensor level and the system level. The concept involves a SETO 2020 project with 

principal investigator Hao Yan from Arizona State University. 

 

5.6. AI for increasing the smart grid awareness 

 

AI and ML can be used to provide grid operators smart monitoring and decisions support in real-time 

analysis and visualization of the electric power system operations. AI assisted cloud computing 

enables advanced monitoring, while real-time analytics provide a model for leveraging multiple data 

sources to correlate, verify, and interpret system telemetry in environments with high scale and low 

data fidelity. Machine learning is especially well applied in such areas as fluctuations in data can be 

detected with increasing accuracy of prediction with increasing history of operations and available 

data. Experience from systems design in related fields shows that in sufficiently complex systems, no 

single data source can be entirely accurate or trustworthy, but an approach that leverages multiple 

sources and applies intelligent data interpretation can provide an extremely reliable, high-fidelity 

systems view.  

This area of application of AI for smart monitoring along with capabilities in integrated power system 

simulation and data analytics with machine learning or deep learning enables provision of advanced, 

integrated situational awareness for the distribution grid and contributions to area-wide flexibility. 

The concept involves a SETO 2020 project with principal investigator Cody Smith of Camus Energy. 
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5.7. AI for PV performance loss rate determination and power forecasting 

 

This area of applying AI is by using spatiotemporal Graph Neural Network models in a so-called 

Reliable System-Topology-Aware Learning Framework. The AI and ML techniques are used to analyze 

data from a large number of neighboring PV systems in order to extract high amounts of information 

about their short- and long-term performance. Machine learning methods are planned to be used to 

overcome data quality issues affecting individual plants.  

Development of spatiotemporal Graph Neural Network models addresses critical questions of long- 

and short-term performance for fleets of PV plants for their operators and also for the grid status 

determination. The proposed learning techniques advance both analytical techniques for long-term 

performance of PV power plants and deep learning techniques, and can mitigate the negative impact 

of PV plant or sensor failure or unreliable input data. The concept involves a SETO 2020 project with 

principal investigator Roger French of Case Western Reserve University. 

 

5.8. Deep Learning probabilistic net load forecasting with enhanced behind-the-

meter PV visibility 

 

Another area of AI application for PV is using machine learning and deep learning techniques to 

predict the electric load one day in advance in areas that have large amounts of behind-the-meter 

solar.  

The AI predicted information on the future net load will allow operators (or AI supported control 

systems) to manage the electric grid more efficiently (in terms of compensating loads and costs). The 

deep learning based probabilistic forecasting framework for a day ahead net load at substations aims 

at separation of the behind-the-meter photovoltaic generation from net load measurements and 

quantifies its impact on net load patterns. Actual AI DL applications requires implementation of the 

transfer learning models that would enable transferring the knowledge learned from geographic 

locations with rich sensor data to diverse locations where only the substation measurements are 

available. The framework could be validated using measurement data from public grid databases as 

well as basing on the Solar Forecast Arbiter platform. The concept involves a SETO 2020 project with 

principal investigator Rui Yang of National Renewable Energy Laboratory. 

 

5.9. AI for demand response potentials with high penetration of behind-the-meter 

solar with storage 

 

This aspect of AI application assisting smart PV is based on machine learning techniques to predict 

the electric load in areas with large amounts of solar energy to enable more efficient grid operation. 

ML application will also be able to forecast the capacity available to the grid from electric loads that 

can be turned on or off depending on the balance between electric demand and generation. Recent 

advances in AI modelling can enhance the accuracy of net load forecasting, the observability of net 

load variability, and the understanding of the coupling between net load and demand response 
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potentials. There are two models under development for addressing hybrid probabilistic forecasting 

which can provide better spatiotemporal information. The concept involves a SETO 2020 project with 

principal investigator Wenyuan Tang of North Carolina State University. 

 

5.10. AI assisted PV integrated smart grid connectivity tracking in real-time with 

heterogeneous data sources by application of graph learning assisted state and 

event tracking 

 

Another scope of AI application in smart grid integrated PV is for its connectivity tracking in real-time 

with heterogeneous data sources by application of graph learning assisted state and event tracking. 

Machine learning techniques enable integration of large-scale electric data and use it to calculate the 

overall state of the electric network. This scope partially expands on the Operations & Maintenance 

(O&M) AI smartPV application but addresses it from a specific perspective of graph based learning 

which might be especially adequate to a grid graph-like topology. The resulting AI enabled tool will 

detect connectivity changes and faults in the grid and update the grid models accordingly, which will 

improve the situational awareness of power grids with large amounts of solar energy by exploiting a 

large volume of data and measurements available from a highly diverse set of sources (especially in 

terms of measured characteristics of the electricity in the grid). This scope of AI application for smart 

PV also considers tools to detect, identify and track network topology changes, that might be due to 

unexpected disturbances or switching events by exploiting the recently developed sparse estimation 

methods in the data analytics area. The concept involves a SETO 2020 project with principal 

investigator Ali Abur of Northeastern University. 

 

5.11. Variational recurrent neural network based net-load prediction under high 

solar penetration 

 

A different in applications is using artificial intelligence and machine learning techniques to create 

tools that can predict future electric loads (e.g. in scale of hours or days) in areas with large amounts 

of behind-the-meter PV systems and deliver savings in the operation of the electric network. There 

are proposed concepts in development and validating of variational recurrent model-based algorithm 

for time-series forecasting of net-load under high solar penetration scenarios. In uncertainty of cloud 

covering weather conditions, varying solar irradiance, geographical information with details including 

shading, and the measured end-use load may theoretically guarantee tight bounds on the net-load 

prediction, that can be obtained from vast datamining and properly trained machine learning models 

working on that data jointly. The proposed concept of variational recurrent model-based net-load 

prediction algorithms that is currently under validation of the real-world industry and utility data 

involves another SETO 2020 project with principal investigator Soumya Kundu of the Pacific 

Northwest National Laboratory. 
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5.12. AI enabled concentrator PV (CPV) learned productivity under variable solar 

conditions 

 

Beyond standard PV installations, artificial intelligence and machine learning techniques can be used 

also to model and optimize concentrator PV plants operations in order to assist human operators in 

their decisions, especially during variable cloudiness conditions. The machine learning techniques can 

be applied to extensive, high-resolution, inferred DNI data, cloud profile and vector data, and related 

solar field thermal collection data in order to develop prescriptive models to optimize solar field 

collection under variable conditions while minimizing long-term PV receiver damages and other 

negative effects. Validation of methods that can be used to this end for CPV are currently underway 

in regard to operating concentrating solar power (thermal) CSP facilities and start to publish 

methodological details for broader investigations. Even though that there are certain differences in 

concentrating solar power for thermal and PV applications (the former being usually central while, 

the latter much more distributed into multiple lower-power PV receivers), certain disadvantages of 

the CSP vs CPV (including environmental issues), seem to favor the latter at least in a long term of the 

technology development, and AI assistive role in optimization of CPV operations is certainly an 

important aspect. The concept of related CSP AI applications involves a SETO 2020 project with 

principal investigator Michael Wagner of University of Wisconsin-Madison and may be generalized to 

concentrator PV. 

 

AI advances to improve and further optimize the performance and reliability of individual solar cells, 

solar modules and PV small-to-large scale installations (from residential to utility power plants), along 

with AI enabled predictions of solar energy output and electric-network situational awareness (also 

including the awareness of how clean the energy in the grid is in the current moment along with ML 

prediction for ahead of time, to enable smarted AI assisted energy consumption management for 

reducing emissions) play an important role in supporting large scale PV energy transition. The current 

cooperation which is beginning to scale internationally between AI experts and solar energy industry 

stakeholders will be further stimulated by the relevant technical standardization efforts, with a goal 

to advance AI smart assisted PV technology. The standardization activity in the scope of AI assisted 

smart PV will facilitate its faster market uptake and speed up the clean energy transition globally. 

6. AI assisted smart PV related devices and processes 

 

6.1. Intelligent hybrid inverter / smart-grid inverter 

An inverter is a power electronic device or circuit that converts direct current (DC) to alternating 

current (AC). The resulting AC frequency depends on the particular device used. Inverters are the 

opposite of converters, which were originally electromechanical devices that converted alternating 

current into direct current. The input voltage, output voltage and frequency as well as the total 

power depend on the design of the respective device or the respective circuit. The inverter is not 

generating any electricity on its own. The power is supplied via the direct current source. An inverter 
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is entirely electronic, in the past it was implemented as combination of mechanical effects (involving 

rotating device) and electronic circuitry. Static inverters do not use any moving parts during the 

conversion. Inverters are mainly used in electrical applications where high currents and voltages are 

present. Circuits that perform the same function for electronic signals (that typically have very low 

currents and voltages) are called oscillators, while the circuits that perform the opposite function, 

converting alternating current to direct current for electronic signals, are called rectifiers.  

Solar panels produce direct current at a voltage that depends on module design and lighting 

conditions. Modern modules using 6-inch cells typically contain 60 cells and produce a nominal 24-30 

V. (so inverters are ready for 24-50 V). For conversion into AC, panels may be connected in series to 

produce an array that is effectively a single large panel with a nominal rating of 300 to 600 VDC. The 

power then runs to an inverter, which converts it into standard AC voltage, typically 230 VAC / 50 Hz 

or 240 VAC / 60 Hz. The main problem with the "string inverter" approach is the string of panels acts 

as if it were a single larger panel with a max current rating equivalent to the poorest performer in the 

string. For example, if one panel in a string has 5% higher resistance due to a minor manufacturing 

defect, the entire string suffers a 5% performance loss. This situation is dynamic. If a panel is shaded 

its output drops dramatically, affecting the output of the string, even if the other panels are not 

shaded. Even slight changes in orientation can cause output loss in this fashion. In the industry, this is 

known as the "Christmas-lights effect", referring to the way an entire string of series-strung 

Christmas tree lights will fail if a single bulb fails. However, this effect is not entirely accurate and 

ignores the complex interaction between modern string inverter maximum power point tracking and 

even module bypass diodes. Shade studies by major microinverter and DC optimizer companies show 

small yearly gains in light, medium and heavy shaded conditions- 2%, 5% and 8% respectively- over 

an older string inverter. Additionally, the efficiency of a panel's output is strongly affected by the load 

the inverter places on it. To maximize production, inverters use a technique called maximum power 

point tracking to ensure optimal energy harvest by adjusting the applied load. However, the same 

issues that cause output to vary from panel to panel, affect the proper load that the MPPT system 

should apply. If a single panel operates at a different point, a string inverter can only see the overall 

change, and moves the MPPT point to match. This results in not just losses from the shadowed panel, 

but the other panels too. Shading of as little as 9% of the surface of an array can, in some 

circumstances, reduce system-wide power as much as 54%. However, as stated above, these yearly 

yield losses are relatively small and newer technologies allow some string inverters to significantly 

reduce the effects of partial shading. Another issue, though minor, is that string inverters are 

available in a limited selection of power ratings. This means that a given array normally up-sizes the 

inverter to the next-largest model over the rating of the panel array. For instance, a 10-panel array of 

2300 W might have to use a 2500 or even 3000 W inverter, paying for conversion capability it cannot 

use. This same issue makes it difficult to change array size over time, adding power when funds are 

available (modularity). If the customer originally purchased a 2500 W inverter for their 2300 W of 

panels, they cannot add even a single panel without over-driving the inverter. However, this over 

sizing is considered common practice in today's industry (sometimes as high as 20% over inverter 

nameplate rating) to account for module degradation, higher performance during winter months or 

to achieve higher sell back to the utility. Other challenges associated with centralized inverters 

include the space required to locate the device, as well as heat dissipation requirements. Large 

central inverters are typically actively cooled. Cooling fans make noise, so location of the inverter 

relative to offices and occupied areas must be considered. And because cooling fans have moving 
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parts, dirt, dust, and moisture can negatively affect their performance over time. String inverters are 

quieter but might produce a humming noise in late afternoon when inverter power is low. 

An intelligent hybrid inverter or smart grid inverter is a conceptual development of inverters for solar 

energy applications in which renewable energy is used for self-consumption, especially in 

photovoltaic solar systems. Earliest devices of this type have been in use since the 1990s. Electricity 

from solar panels is only generated during the day, with peak generation occurring around noon. 

Generation fluctuates and may not be synchronized with the power consumption of a load. In order 

to bridge this gap between what is produced and what is consumed in the evening when there is no 

solar power production, it is necessary to store energy for later use and to store and consume energy 

with smart hybrid inverters (smart grid inverters). With the development of systems that include 

renewable energy sources and rising electricity prices, private companies and research laboratories 

have significantly improved intelligent inverters to synchronize energy generation and consumption. 

The function of the intelligent hybrid inverter enables selection and alignment of renewable energy 

generated by the PV installation , energy from the grid and energy storage based on consumption 

levels. In contrast to conventional inverters, hybrid inverters do not systematically store energy and 

send it to the grid instead of systematically storing it in batteries (with a significant yield loss of at 

least 20%), e.g. when there is more electric power production than consumption. This system also 

enables the selection of whether electricity from photovoltaic modules is to be stored or consumed 

via an internal control unit in intelligent devices. This is possible through a technique that adds 

different energy sources (phase coupling: on-grid or grid-tie techniques) and the management of the 

electricity stored in the battery (off-grid technology). Hybrid inverters therefore work both on-grid 

(grid-connected) and off-grid, hence these are referred to as hybrid (both on-grid and off-grid 

architecture), as well as managing backup (in the event of a power failure). Intelligent inverters are 

the future of photovoltaic solar module systems that are dedicated to self-consumption of energy or 

automatic energy consumption and production management, changing consumers into prosumers. 

The technology of intelligent hybrid inverters is developed in two directions: i.e. battery based οff-

grid inverters being further developed for on-grid connection (sometimes also referred to as multi-

mode inverters), grid tie inverters being further developed for diverting energy to and from batteries  

In the use in off-grid mode (without a network) with the ability to connect to a generator, the 

inverter must be connected to a battery bank and have real off-grid functions. Not all hybrid 

inverters  can be used in off-grid applications. The use in on-grid or grid-tie (connected to the 

network) with the possibility of selling energy or excess energy, requires to adhere to the security 

norm compliance for protection and decoupling (DIN VDE 0126.1). Use in hybrid mode the inverter 

functions with a battery bank, but is also connected to the grid. This dual functionality is the highlight 

of hybrid inverters that hence enable energy management (smart grid functionality). If the inverter is 

used in backup mode, or storage mode it prevents blackouts by switching from on-grid mode to off-

grid mode at the moment of a grid outage, thereby eliminating network cuts. 

A solar micro-inverter, or microinverter, is a plug-and-play device used in photovoltaics, that converts 

direct current (DC) generated by a single solar module to alternating current (AC). Microinverters 

contrast with conventional string and central solar inverters, in which a single inverter is connected 

to multiple solar panels. The output from several microinverters can be combined and often fed to 

the electrical grid. Microinverters have several advantages over conventional inverters. The main 
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advantage is that they electrically isolate the panels from one another, so small amounts of shading, 

debris or snow lines on any one solar module, or even a complete module failure, do not 

disproportionately reduce the output of the entire array. Each microinverter harvests optimum 

power by performing maximum power point tracking (MPPT) for its connected module. Simplicity in 

system design, lower amperage wires, simplified stock management, and added safety are other 

factors introduced with the microinverter solution. The primary disadvantages of a microinverter 

include a higher initial equipment cost per peak watt than the equivalent power of a central inverter 

since each inverter needs to be installed adjacent to a panel (usually on a roof). This also makes them 

harder to maintain and more costly to remove and replace. Some manufacturers have addressed 

these issues with panels with built-in microinverters. A microinverter has often a longer lifespan than 

a central inverter, which will need replacement during the lifespan of the solar panels. Therefore, the 

financial disadvantage at first may become an advantage in the long term. A power optimizer is a 

type of technology similar to a microinverter and also does panel-level maximum power point 

tracking, but does not convert to AC per module. 

 

6.2. AI assisted maximum power point tracking (MPPT) 

Maximum Power Point Tracking (MPPT) is a technique in PV solar systems to assure most efficient 

generation of electricity in regard to external and internal conditions.. 

PV solar systems exist in many different configurations in regard to their relationship with inverter 

systems, external grids, battery banks, or other electrical loads. Regardless of the destination of solar 

energy, the key problem MPPT addresses is that the efficiency of energy transfer from the solar cell 

depends on the amount of sunlight falling on the solar panels, the temperature of the solar panel, 

and the electrical properties of the charge. As these conditions vary, the load characteristic that gives 

the highest power transfer efficiency changes. The efficiency of the system is optimized when the 

load characteristic changes in order to keep the power transmission at the highest efficiency. This 

load characteristic is known as the Maximum Power Point (MPP). MPPT is the process by which this 

point is found and the load characteristic is maintained there. Electrical circuits can be designed in 

such a way that they present any loads to the photovoltaic cells and then adapt the voltage, current 

or frequency to other devices or systems. MPPT solves the problem of choosing the best load to be 

presented to the cells in order to get them the most usable power supply. Solar cells have a complex 

relationship between temperature and total resistance that creates a non-linear output efficiency 

that can be analyzed using the I-V curve. The aim of the MPPT system is to sample the power of the 

PV cells and apply the correct resistance (load) in order to achieve maximum performance under 

certain environmental conditions. MPPT devices are typically integrated into a power converter 

system that provides voltage or current conversion, filtering, and regulation to drive various loads, 

including power grids, batteries, or motors. 

Solar inverters convert DC power to AC power and may contain MPPT: These inverters measure the 

output power (I-V curve) of the solar modules and apply the correct resistance (load) to get the 

maximum output. The power at the MPP is the product of the MPP voltage and the MPP current. 
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PV cells have a complex dependence between outside conditioning parameters and output in terms 

of efficiency of solar energy conversion. The fill factor (FF) is a specific parameter which characterizes 

the non-linear electrical behavior of the solar cell.  

 

The fill factor is defined as the ratio of the maximum power from the solar cell to the product of open 

circuit voltage and short-circuit current. Upon tabulated data it is often used to estimate maximum 

power that a cell can provide with an optimal load under given conditions (power is equal to 

multiplication of the fill factor and the open circuit voltage and the short circuit current).  

 

Usually the FF along with the open circuit voltage and the short circuit current constitute sufficient 

empirical data to provide a model of electrical behavior of the PV cell under standard external 

conditions. In any given operational external conditions, PV solar cell has a unique operating point in 

which values of the voltage and current result in a maximum power generated. Such values 

correspond to a certain load resistance which is equal to voltage divided by the current under the 

Ohm’s law. The power generated is voltage multiplied by current. For a PV cell an I-V curve can be 

plotted, and for the majority of this curve PV cell acts as a constant current source. 

 

There is also a so called MPP region in which the curve has an inverse exponential (approximately) 

relationship for the interdependence of voltage and current. The power (either input or output 

from/to the device) is optimized when the derivative of current over voltage (which on the graph of 

the I-V curve can be interpreted as its slope) is equal the opposite of the current to voltage ratio (at 

derivative of power over voltage equal zero, i.e. at the so called maximum power point MPP, on the 

graph interpreted as a knee of the curve). A load with resistance equal to inverse of the ratio of 

voltage to current draws the maximum power from the cell (defining the so-called characteristic 

resistance of the PV device). The characteristic resistance is however a dynamic quantity dependent 

on insolation, temperature, degradation of the cell, etc. If the actual resistance deviates from the 

characteristic resistance the power output will be diminished which translates to the PV cell not 

operating efficiently. The process of maximum power point tracking (or device known as MPPT, or a 

tracker) uses different approaches in electronic control circuitry to allow for the converter to draw 

the maximum power that can be drawn, by tracking this point with various methods (e.g. bisection 

method, however only applicable where the full power-voltage curve is available, while in other 

cases algorithmic approaches are used, recently investigating modern AI methods). 

 

AI application for MPPT is usually with frequent sampling PV panel voltage and current  to adjust the 

duty ratio in an optimal way for reaching maximal efficiency. Impedance as a characteristic of a PV 

panel is coupled with a duty ratio of a DC-DC converter (a direct current to direct current converter is 

referred to as a power optimizer, working with a DC solar panel) transforming impedance of a source 

circuit to the load circuit (directly connecting load to a solar panel will most certainly miss with the 

operating point of a solar panel the peak intensity. With varying of the duty ratio impedance is 

changed as well, and in a particular its value (translating into a corresponding duty ratio) the 

operating point will take the highest power transfer point. Since however the current-voltage curve 
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of a solar panel (or a module) varies significantly with external factors (such as insolation and 

temperature) it is not possible to fix the duty ratio in order to set the MPP, hence I-V sampling is 

required and support of conventional statistical or modern AI algorithms (which is referred to as 

MPPT). In sampling approach optimizing adjustments to the duty ratio are continuously 

implemented. Sometime microcontrollers are employed to implement all relevant algorithms, 

however modern implementations usually  use external processing power for analytics and load 

forecasting (especially in a proper integration with a smart power grid). The main methods used for 

the MPPT and holding a potential to AI methods based improvements are: 

 

• Perturb and observe 

• Incremental conductance 

• Current sweep 

• Constant voltage 

• Temperature method 

 

6.3. Smart PV module 

Smart modules are a type of solar panel that has a power optimizer embedded into the solar module 

at the time of manufacturing. Typically the power optimizer is embedded in the junction box of the 

solar module. Power optimizers attached to the frame of a solar module, or connected to the 

photovoltaic circuit through a connector, are not properly considered smart modules. Smart modules 

are different from traditional solar panels because the power electronics embedded in the module 

offers enhanced functionality such as panel-level maximum power point tracking, monitoring, and 

enhanced safety. 

A power optimizer is a DC to DC converter technology developed to maximize the energy harvest 

from solar photovoltaic or wind turbine systems. They do this by individually tuning the performance 

of the panel or wind turbine through maximum power point tracking, and optionally tuning the 

output to match the performance of the string inverter (DC to AC inverter). Power optimizers are 

especially useful when the performance of the power generating components in a distributed system 

will vary widely, such as due to differences in equipment, shading of light or wind, or being installed 

facing different directions or widely separated locations. 

Power optimizers for solar applications can be similar to microinverters in that both systems attempt 

to isolate individual panels in order to improve overall system performance. A smart module is a 

power optimizer integrated into a solar module. A microinverter essentially combines a power 

optimizer with a small inverter in a single enclosure that is used on every panel, while the power 

optimizer leaves the inverter in a separate box and uses only one inverter for the entire array. The 

claimed advantage to this "hybrid" approach is lower overall system costs, avoiding the distribution 

of electronics. 
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6.4. Smart grid 

There are many parallel definitions of smart grids. It is mainly because the smart adjective is not a 

well-defined concept for devices. In general terms smart grids can be thought of as modernized 

power grids that make it much more flexible, interactive and automatically manageable upon 

processed data on its operation parameters in a real time feedback, also including technologies for 

intelligent monitoring, control, communication, O&M and self-healing. 

Majority of the current power grid infrastructure internationally dates back to the 1960s or 50s. The 

electric installations naturally reach their end of operations and are under an increased stress of a 

constant electric demand growth. The main drive for smart grids is in integration of renewable 

energies which due to their fluctuating nature of production impose extreme infrastructure stresses 

in productions peaks that the smart grid must accommodate and store in excess being sufficiently 

flexible. Intelligent systems, including self-accommodation, monitoring, control, communication and 

self-healing technologies help to deal with the diverse network requirements. It is also must involve 

ease of connection and operation of generators of different sizes, especially enabling small sized 

generation from small-scale residential PV installation and other small to medium scale distributed 

renewable energy sources (as well as be able to contain the generated power fluctuations in order to 

deliver electrical energy in a continuous manner as a just-in-time end-product). The latter aspect is 

especially important in terms of developing AI assisted smart PV to enable interconnection with a 

grid in a way that is able to compensate for either deficiency or surplus of the generated energy in 

regards to the consumption needs (and a general intermittency of the PV energy, generated only by 

day and in magnitude directly proportional to the determined by the weather solar irradiation level). 

Smart grids also feature security protocols involving avoidance or minimizing fluctuations in performs 

and overall failures to deliver electricity in a sustainable, efficient and safe manner.  

A widely used definition of the smart grid that stipulates seven key characteristics is defined by the 

standardization organization International Electrotechnical Commission (IEC). According to this 

definition, a smart grid must: 

• Heal itself, by using real-time information from sensors with automated control to detect and 

respond to system problems by automatically avoiding or mitigating power outages, power 

quality problems, and service disruptions; 

• Support all generation and storage entities in accommodating power loads with seamless 

interconnection between distributed power sources; 

• Stay resilient to cyber-attacks and natural disasters using technologies to identify and 

respond to man-made or natural disruptions and isolate the affected areas or redirect power 

flows around any damaged facilities; 

• Enable higher penetration of power generation sources and support larger amounts of 

renewable intermittent energy resources; 

• Optimize assets, utilization, and operational efficiency while minimizing operations and 

maintenance costs; 

• Provide a high-power quality, and saving money by reducing downtimes; 

• Enable new services, products, and enable an energy market potential for small-scale 

generation for local markets (for example) or different utilities services. 
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All the different elements of the system should communicate with a common interface (in order to 

reduce the need for translators and assure optimal and timely control message exchange). The smart 

grid should identify what information is fundamental, which systems need to communicate and how 

this information needs to be routed, while on the physical level the smart grid should decide how 

information needs to be transported in a network environment. 


